CHAPTER 11

Physiology of the Muscular System

CHAPTER OUTLINE

General Functions, 396
Function of Skeletal Muscle Tissue, 396
  Overview of the Muscle Cell, 396
  Myofilaments, 398
  Mechanism of Contraction, 400
    Excitation of the Sarcolemma, 400
    Contraction, 400
    Relaxation, 402
  Energy Sources for Muscle Contraction, 404
    ATP, 404
    Glucose and Oxygen, 404
    Aerobic Respiration, 405
    Anaerobic Respiration, 405
    Heat Production, 405
Function of Skeletal Muscle Organs, 408
  Motor Unit, 408
  Myography, 409

The Twitch Contraction, 409
  Treppe: The Staircase Phenomenon, 409
  Tetanus, 410
  Muscle Tone, 411

The Graded Strength Principle, 411
  Isotonic and Isometric Contractions, 414

Function of Cardiac and Smooth Muscle Tissue, 415
  Cardiac Muscle, 415
  Smooth Muscle, 417

The Big Picture, 418

Mechanisms of Disease, 419

Case Study, 423

LANGUAGE OF SCIENCE

acetylcholine (ACh) [ass-ee-til-KOH-leen] (acetyl- vinegar, -chole- bile, -ine made of)
actin (AK-tin) [act- act or do, -in substance]
concentric contractions (kon-SEN-trick) [con- together, -centr center, con- together, -traction to draw]
contractility (kon-trak-TIL-i-tee) [con- together, -tractil- to draw, -ity quality of]
creatine phosphate (CP) (KREE-ah-tin FOS-fayt) [creatine flesh, phosph- phosphorus, -ate chemical derivative]
cross bridges
eccentric contractions (ek-SENT-rik) [ec- out of, -centr center, con- together, -traction to draw]
elastic filaments (eh-LAS-tik FIL-a-ments) [elastic to drive, fila- to spin thread, -ment result]
excitability (ek-syte-eh-BIL-i-tee) [excite to arouse]
extensibility (ek-STE-NEE-si-BIL-i-tee) [extend to stretch out]
fast fibers
graded strength principle
hypertrophy (hye-PER-troh-fee) [hyper- excessive, -troph nourishment]
intermediate fibers (in-TER-MEE-dee-it) [inter- occurring between, -mediate to divide]
isometric contraction (eye-soh-MET-rik) [iso- equal, -metr- measure, -ic pertaining to]
isotonic contraction (eye-soh-TON-ik) [iso- equal, -tonic quality of muscle contraction]
lactic acid (LAK-tik) [lact- milk, -ic pertaining to, acidus sour]
M line
motor endplate [mot movement]
motor neuron (NOO-ron) [mot movement, neuro nerve]
motor unit [mot movement]
multiunit smooth muscle [multi many]
muscle fatigue (fah-TEEEG) [fatigue to tire]
In Chapter 10, we explored the anatomy of skeletal muscle organs and how they work together to accomplish specific body movements. In this chapter, we continue our study of the skeletal muscular system by examining the basic characteristics of skeletal muscle tissue. We uncover the mechanisms that permit skeletal muscle tissue to move the body’s framework, as well as perform other functions vital to maintaining a constant internal environment. We also briefly examine smooth and cardiac muscle tissues and contrast them with skeletal muscle tissue.

**GENERAL FUNCTIONS**

If you have any doubts about the importance of muscle function to normal life, think about what it would be like without it. It is hard to imagine life with this matchless power lost. However, as cardinal as it is, movement is not the only contribution muscles make to healthy survival. They also perform two other essential functions: production of a large proportion of body heat and maintenance of posture.

1. **Movement.** Skeletal muscle contractions produce movement of the body as a whole (locomotion) or movement of its parts.

2. **Heat production.** Muscle cells, like all cells, produce heat by the process known as catabolism (discussed in Chapters 4 and 27). But because skeletal muscle cells are both highly active and numerous, they produce a major share of total body heat. Skeletal muscle contractions therefore constitute one of the most important parts of the mechanism for maintaining homeostasis of temperature.

3. **Posture.** The continued partial contraction of many skeletal muscles makes possible standing, sitting, and maintaining a relatively stable position of the body while walking, running, or performing other movements.

**FUNCTION OF SKELETAL MUSCLE TISSUE**

Skeletal muscle cells have several characteristics that permit them to function as they do. One such characteristic is the ability to be stimulated, often called excitability or irritability. Because skeletal muscle cells are excitable, they can respond to regulatory mechanisms such as nerve signals.

**Contractility** of muscle cells, the ability to contract or shorten, allows muscle tissue to pull on bones and thus produce body movement. Sometimes muscle fibers do work by steadily resisting a load without actually becoming shorter. In such a case, the muscle cell is still said to be contracting. The term contraction, when applied to muscles, is meant in a broad sense of pulling the ends together—regardless of whether the cell actually gets shorter.

**Extensibility,** the ability to extend or stretch, allows muscles to return to their resting length after having contracted. Muscles may also extend while still exerting force, as when lowering a heavy object in your hand.

All of these characteristics of muscle cells are related to the microscopic structure of skeletal muscle cells. In the following passages, we first discuss the basic structure of a muscle cell. We then explain how a muscle cell’s structural components allow it to perform its specialized functions.

**Overview of the Muscle Cell**

Look at Figure 11-1. As you can see, a skeletal muscle is composed of bundles of skeletal muscle fibers that generally extend the entire length of the muscle. One reason they are called fibers instead of cells is because of their long, thin, threadlike shape. They are 1 to 40 mm long but have a diameter of only 10 to 100 μm. The gastrocnemius muscle of the calf, for example, has approximately a million threadlike muscle fibers.

Another reason skeletal muscle fibers are not usually called “muscle cells” is because during muscle tissue development, individual precursor cells fuse together to form a new, combined structure with many nuclei—the mature muscle fiber. That is why muscle fibers don’t follow the general rule of one nucleus per cell: each fiber is made up of several cells that are now combined into one. Some adult muscle fibers have one of these tiny precursor cells hugging their outer boundary. These “satellite cells” are in fact stem cells that can become active after a muscle injury to produce more muscle fibers. Scientists are now trying to understand this mechanism better in the hope of developing new therapies for replacing lost muscle tissues.

Skeletal muscle fibers have many of the same structural parts as other cells. Several of them, however, bear different names in muscle fibers. For example, sarcolemma is a name often used for the plasma membrane of a muscle fiber. Sarcoplasm is its cytoplasm. Muscle fibers contain many more mitochondria than usual, and as we have already learned, each fiber has several nuclei (Figure 11-2).

Muscle cells contain networks of tubules and sacs known as the sarcoplasmic reticulum (SR)—the muscle fiber’s version of smooth endoplasmic reticulum. The function of the SR is to temporarily store calcium ions (Ca⁺⁺). The membrane of the SR continually pumps Ca⁺⁺ from the sarcoplasm and stores the ions within its sacs.

A structure unique to muscle cells is a system of transverse tubules, or T tubules. This name derives from the fact that these tubules extend transversely across the sarcoplasm, at a right angle to the long axis of the cell. As Figures 11-1, B, and 11-2 show, T tubules are formed by inward extensions of the sarcolemma. The chief function of T tubules is to allow electrical signals, or impulses, traveling along the sarcolemma to move deeper into the cell.

Notice in Figures 11-1, B, and 11-2 that a tubular sac of the SR butts up against each side of every T tubule in a muscle fiber. This triplet of tubules (a T tubule sandwiched between sacs of the SR) is called a triad. The triad is an important feature of the muscle cell because it allows an electrical impulse traveling along a T tubule to stimulate the membranes of adjacent sacs of the SR. Figure 11-3 shows how this works. At rest, calcium ion pumps in the SR membrane pump Ca⁺⁺ into the terminal sacs of the SR. However, when an electrical impulse travels along the sarcolemma and down the T tubule, gated Ca⁺⁺ channels in the SR open in response to the voltage fluctuation. This floods the sar-
Chapter 11  Physiology of the Muscular System  397

Figure 11-1 Structure of skeletal muscle. A, Skeletal muscle organ composed of bundles of contractile muscle fibers held together by connective tissue. B, Greater magnification of a single fiber showing smaller fibers—myofibrils—in the sarcoplasm. Note the sarcoplasmic reticulum and T tubules forming a three-part structure called a triad. C, Myofibril magnified further to show a sarcomere between successive Z lines (Z disks). Cross striae are visible. D, Molecular structure of a myofibril showing thick myofilaments and thin myofilaments.

Figure 11-2 Unique features of the skeletal muscle cell. Notice especially the T tubules, which are extensions of the plasma membrane, or sarcolemma, and the sarcoplasmic reticulum (SR), a type of smooth endoplasmic reticulum that forms networks of tubular canals and sacs containing stored calcium ions. A triad is a triplet of adjacent tubules: a terminal (end) sac of the SR, a T tubule, and another terminal sac of the SR.
Myofilaments

Each muscle fiber contains a thousand or more parallel myofibrils that are only about 1 μm thick. Lying side by side in each myofibril are approximately 15,000 sarcomeres, each made up of hundreds of thick and thin filaments. The molecular structure of these myofilaments reveals the mechanism of how muscle fibers contract and do so powerfully. It is wise, therefore, to take a moment to study the structure of myofilaments before discussing the detailed mechanism of muscle contraction.

First of all, four different kinds of protein molecules make up myofilaments: myosin, actin, tropomyosin, and troponin. The thin filaments are made of a combination of three proteins: actin, tropomyosin, and troponin. Figure 11-5, A, shows that globular actin molecules are strung together like beads to form two fibrous...
The sarcomere is the basic contractile unit of the muscle cell. As you read the explanation of the sarcomere’s structure and function, you might wonder what the Z line, M line, and other components really are—and what they do for the muscle cell.

First of all, it is important that you appreciate the three-dimensional nature of the sarcomere. You can then realize that the Z line is actually a dense plate or disk to which the thin filaments directly anchor. As a matter of fact, the Z line is often called the Z disk. Besides being an anchor for myofibrils, the Z line is useful as a landmark separating one sarcomere from the next.

Detailed analysis of the sarcomere also shows that the thick (myosin) filaments are held together and stabilized by protein molecules that form the M line. Note that the regions of the sarcomere are identified by specific zones or bands:

- **A band**—the segment that runs the entire length of the thick filaments
- **I band**—the segment that includes the Z line and the ends of the thin filaments where they do not overlap the thick filaments
- **H zone**—the middle region of the thick filaments where they do not overlap the thin filaments

Note in Figure 11-2 that the T tubules in human muscle fibers align themselves along the borders between the A band and I band.

Later, as you review the process of contraction, note how the regions listed above change during each step of the process.

In addition to thin and thick filaments, each sarcomere has numerous elastic filaments. Elastic filaments, composed of a protein called titin (connectin), anchor the ends of the thick filaments to the Z line, as the figure shows. The elastic filaments are believed to give myofibrils, and thus muscle fibers, their characteristic elasticity. Dystrophin, not shown here, is a protein that holds the actin filaments to the sarcolemma. Dystrophin and a complex of connected molecules anchors the muscle fiber to surrounding matrix so that the muscle does not break during a contraction. Dystrophin and its role in muscular dystrophy are discussed further on p. 420.

**Figure 11-4  Skeletal muscle striations.** Color-enhanced scanning electron micrographs (SEMs) showing longitudinal views of skeletal muscle fibers. B shows detail of A at greater magnification. Note that the myofilaments of each myofibril form a pattern that when viewed together, produces the striated (striped) pattern typical of skeletal muscle.
Mechanism of Contraction

To accomplish the powerful shortening, or contraction, of a muscle fiber, several processes must be coordinated in a stepwise fashion. These steps are summarized in the following sections and in Box 11-2.

Excitation of the Sarcolemma

Under normal circumstances, a skeletal muscle fiber remains “at rest” until it is stimulated by a signal from a special type of nerve cell called a motor neuron. As Figure 11-7 shows, motor neurons connect to the sarcolemma of a muscle fiber at a folded motor endplate to form a junction called a neuromuscular junction. A neuromuscular junction (NMJ) is a type of connection called a synapse and is characterized by a narrow gap, or synaptic cleft, across which neurotransmitter molecules transmit signals. When nerve impulses reach the end of a motor neuron fiber, small vesicles release a neurotransmitter, acetylcholine (ACh), into the synaptic cleft. Diffusing swiftly across this microscopic gap, acetylcholine molecules contact the sarcolemma of the adjacent muscle fiber. There they stimulate acetylcholine receptors and thereby initiate an electrical impulse in the sarcolemma. The process of synaptic transmission and induction of an impulse—a process often called excitation—is discussed in detail in Chapter 12.

Contraction

The impulse, a temporary electrical voltage imbalance, is conducted over the muscle fiber’s sarcolemma and inward along the T tubules (Figure 11-8). The impulse in the T tubules trig-
Figure 11-7 Neuromuscular junction (NMJ). A, Micrograph showing four neuromuscular junctions. Three are surface views (arrows) and one is a side view (arrowhead). N, Nerve fibers; M, muscle fibers. B, This sketch shows a side view of the NMJ. Note how the distal end of a motor neuron fiber forms a synapse, or “chemical junction,” with an adjacent muscle fiber. Neurotransmitter molecules (specifically, acetylcholine) are released from the neuron’s synaptic vesicles and diffuse across the synaptic cleft. There they stimulate receptors in the motor endplate region of the sarcolemma.

Figure 11-8 Effects of excitation on a muscle fiber. Excitation of the sarcolemma by a nerve impulse initiates an impulse in the sarcolemma. The impulse travels across the sarcolemma and through the T tubules, where it triggers adjacent sacs of the SR to release a flood of calcium ions (Ca$$^{++}$$) into the sarcoplasm. Ca$$^{++}$$ is then free to bind to troponin molecules in the thin filaments. This binding, in turn, initiates the chemical reactions that produce a contraction.
The release of a flood of calcium ions from the adjacent sacs of the SR (see Figures 11-3 and 11-8). In the sarcoplasm, the calcium ions combine with troponin molecules in the thin filaments of the myofibrils (Figure 11-9). Recall that troponin normally holds tropomyosin strands in a position that blocks the chemically active sites of actin. When calcium binds to troponin, however, the tropomyosin shifts to expose active binding sites on the actin molecules (Figure 11-10). Once the active sites are exposed, energized myosin heads of the thick filaments bind to actin molecules in the nearby thin filaments. The myosin heads bend with great force, literally pulling the thin filaments past them. Each head then releases itself, binds to the next active site, and pulls again. Figure 11-11 shows how sliding of the thin filaments toward the center of each sarcomere quickly shortens the entire myofibril—and thus the entire muscle fiber. This model of muscle contraction has been called the sliding-filament model. Perhaps a better name might be ratcheting-filament model because the myosin heads actively ratchet the thin filaments toward the center of the sarcomere with great force.

Muscle fibers usually contract to about 80% of their starting length—rarely to 60% or 70%. Some muscle fibers contract hardly at all because they are pulling on an unmoving load. Even so, such muscle fibers are still said to be “contracting” in a broad sense. Their sarcomeres are still working hard to pull the ends toward one another, as though they are at a steady “draw” in a game of tug-of-war (Figure 11-12). Because the actin-myosin bond is not permanent, the sarcomere cannot “lock up” once it has shortened to hold its position passively. Thus, it takes energy to actively maintain a shortened position—by continually repeating the actin-myosin reaction as long as necessary.

**Relaxation**

Almost immediately after the SR releases its flood of calcium ions into the sarcoplasm, it begins actively pumping them back into its sacs once again. Within a few milliseconds, much of the calcium is recovered. Because the active transport carriers of the SR have greater affinity for calcium than the troponin molecules do, the calcium ions are stripped off the troponin molecules and returned to the sacs of the SR. As you might suspect, this shuts down the entire process of contraction. Troponin without its bound calcium allows the tropomyosin to once again block actin’s active sites. Myosin heads reaching for the next active site on actin are blocked, and thus the thin filaments are no longer being held—or pulled—by the thick filaments.

If no new nerve impulse immediately follows, the muscle fiber now relaxes. The relaxed muscle fiber may remain at its contracted length, but forces outside the muscle fiber are likely to pull it back to its longer resting length.

As we have seen, the contraction process in a skeletal muscle fiber automatically shuts itself off within a small fraction of a second after the initial stimulation. However, a muscle fiber may sustain a contraction for some time if there are many stimuli in rapid succession, thus permitting calcium ions to remain available in the sarcoplasm for a longer period.

**Figure 11-9 The molecular basis of muscle contraction.** A. Each myosin head in the thick filament moves into a resting position after an ATP molecule binds and transfers its energy. B. Calcium ions released from the SR bind to troponin in the thin filament, thereby allowing tropomyosin to shift from its position blocking the active sites of actin molecules. C. Each myosin head then binds to an active site on a thin filament and displaces the remnants of ATP hydrolysis—adenosine diphosphate (ADP) and inorganic phosphate (P). D. The release of stored energy from step A provides the force needed for each head to move back to its original position and pull actin along with it. Each head will remain bound to actin until another ATP molecule binds to it and pulls it back into its resting position (A).
**Figure 11-10 Role of calcium in muscle contraction.** Color-enhanced scanning electron micrograph (SEM) of a thin filament. When calcium is absent, the active myosin binding sites on actin are covered by tropomyosin. However, after calcium becomes available and binds to troponin, the tropomyosin is pulled out of its blocking position and reveals the active binding sites on actin.

**Figure 11-11 Sliding-filament model.** A, During contraction, myosin cross bridges pull the thin filaments toward the center of each sarcomere, thus shortening the myofibril and the entire muscle fiber. B, Color-enhanced scanning electron micrograph (SEM) showing the myosin cross bridges that connect the thick filaments to the thin filaments pulling on the thin filaments and causing them to slide.

**Figure 11-12 Simplified sarcomere.** This diagram illustrates the concept of muscle contraction as a sort of tug-of-war game in which the myosin heads (shown here as little people) hold onto thin filament “ropes”—thus forming cross bridges. As the myosin heads pull on the thin filaments, the Z lines (Z disks) get closer together—thus shortening the sarcomere. Likewise, the short length of a sarcomere may be held in position by the continued effort of the myosin heads.


BOX 11-2  Major Events of Muscle Contraction and Relaxation

**Excitation and Contraction**

1. A nerve impulse reaches the end of a motor neuron and triggers release of the neurotransmitter acetylcholine.
2. Acetylcholine diffuses rapidly across the gap of the neuromuscular junction and binds to acetylcholine receptors on the motor endplate of the muscle fiber.
3. Stimulation of acetylcholine receptors initiates an impulse that travels along the sarcolemma, through the T tubules, to the sacs of the SR.
4. Ca$^{2+}$ is released from the SR into the sarcoplasm, where it binds to troponin molecules in the thin myofilaments.
5. Troponin molecules in the thin myofilaments shift and thereby expose actin’s active sites.
6. Energized myosin cross bridges of the thick myofilaments bind to actin and use their energy to pull the thin myofilaments toward the center of each sarcomere. This cycle repeats itself many times per second, as long as adenosine triphosphate is available.
7. As the filaments slide past the thick myofilaments, the entire muscle fiber shortens.

**Relaxation**

1. After the impulse is over, the SR begins actively pumping Ca$^{2+}$ back into its sacs.
2. As Ca$^{2+}$ is stripped from troponin molecules in the thick myofilaments, tropomyosin returns to its position and blocks actin’s active sites.
3. Myosin cross-bridges are prevented from binding to actin and thus can no longer sustain the contraction.
4. Because the thick and thin myofilaments are no longer connected, the muscle fiber may return to its longer, resting length.

QUICK CHECK

5. Describe the structure of thin and thick myofilaments, and name the kinds of proteins that compose them.
6. What is a neuromuscular junction (NMJ)? How does it work?
7. What is the role of calcium ions (Ca$^{2+}$) in muscle contraction?

Energy Sources for Muscle Contraction

**ATP**

The energy required for muscular contraction is obtained by hydrolysis of a nucleotide called adenosine triphosphate, or ATP. Recall from Chapter 2 (Figure 2-30, p. 68) that this molecule has an adenine and ribose group (together called adenosine) attached to three phosphate groups. Two of the three phosphate groups in ATP are attached to the molecule by high-energy bonds. Breaking of these high-energy bonds provides the energy necessary to pull the thin myofilaments during muscle contraction.

As Figure 11-9, A, shows, before contraction occurs, each myosin cross-bridge head moves into a resting position when an ATP molecule binds to it. The ATP molecule breaks its outermost high-energy bond, thereby releasing inorganic phosphate (P$_i$) and transferring the energy to the myosin head. In a way, this is like pulling back the elastic band of a slingshot—the apparatus is “at rest” but ready to spring. When myosin binds to actin, the stored energy is released, and the myosin head does indeed spring back to its original position. Thus, the energy transferred from ATP is used to do the work of pulling the thin filaments during contraction. Another ATP molecule then binds to the myosin head, which then releases actin and moves into its resting position again—all set for the next “pull.” This cycle repeats as long as ATP is available and actin’s active sites are unblocked.

Muscle fibers must continually resynthesize ATP because they can store only small amounts of it. There is only enough ATP in a muscle fiber for about 2 to 4 seconds of maximum contraction. However, energy for the resynthesis of ATP can be quickly supplied by the breakdown of another high-energy compound, creatine phosphate (CP), as you can see in Figure 11-13. CP is a sort of backup energy molecule that provides enough energy for about 20 additional seconds of maximal contraction. Both ATP and CP are continually resynthesized—or “recharged”—by cellular respiration. Ultimately, energy for both ATP and CP synthesis comes from the catabolism of food.

If a cell runs out of ATP completely and cannot resynthesize more, contraction stops possibly resulting in stiffness caused by the inability of myosin heads to disengage from actin (see Figure 11-9). When this happens after death, it is called rigor mortis (Box 11-3).

**Glucose and Oxygen**

Note that continued, efficient nutrient catabolism by muscle fibers requires two essential ingredients: glucose and oxygen. Glucose is a nutrient molecule that contains many chemical bonds. The potential energy stored in these chemical bonds is released during catabolic reactions in the sarcoplasm and mitochondria and transferred to ATP or CP molecules. Ultimately, all the glucose needed by muscle fibers comes from the blood. Skeletal muscle fibers are surrounded by a network of blood capillaries, the tiny “exchange” vessels that allow molecules to enter or leave the blood (Figure 11-14).

Some muscle fibers ensure an uninterrupted supply of glucose by storing it in the form of glycogen. Recall from Chapter 2 that glycogen is a polysaccharide made up of thousands of glucose subunits. Oxygen, which is needed for a catabolic process known as aerobic respiration, also ultimately comes from the blood. Most of the oxygen carried in the blood is temporarily bound to hemoglobin molecules—a reddish pigment inside red blood cells.

Oxygen can also be stored by cells to ensure an uninterrupted supply. During rest, excess oxygen molecules in the sarcoplasm are attracted to a large protein molecule called myoglobin. Like hemoglobin, myoglobin is a reddish pigment with iron (Fe) groups that attract oxygen molecules and hold them temporarily. When the oxygen concentration inside a muscle fiber decreases rapidly—as it does during exercise—it can be quickly resupplied from myoglobin. Muscle fibers that contain large amounts of myoglobin take on a deep red appearance and are often called red fibers. Muscle fibers with little myoglobin in them are light pink and are often called white fibers. Most muscle tissues contain a mixture of red and white fibers (Box 11-4).
Aerobic Respiration

Aerobic (oxygen-requiring) respiration is a catabolic process that produces the maximum amount of energy available from each glucose molecule. When the oxygen concentration is low, however, muscle fibers can shift toward increased use of another catabolic process: anaerobic respiration. As its name implies, anaerobic respiration does not require the immediate use of oxygen. Besides its ability to produce ATP without oxygen, anaerobic respiration has the added advantage of being very rapid. Muscle fibers having difficulty getting oxygen—or fibers that generate a great deal of force very quickly—may rely on anaerobic respiration to resynthesize their ATP molecules.

Anaerobic Respiration

Anaerobic respiration may allow the body to avoid the use of oxygen in the short term, but not in the long term. Anaerobic respiration results in the formation of an incompletely catabolized molecule called lactic acid. Lactic acid may accumulate in muscle tissue during exercise and cause a burning sensation. Some of the lactic acid eventually diffuses into the blood and is delivered to the liver, where an oxygen-consuming process later converts it back into glucose. This is one of the reasons that after heavy exercise, when the lack of oxygen in some tissues has caused the production of lactic acid, a person may still continue to breathe heavily. The body is repaying the so-called oxygen debt by using the extra oxygen gained by heavy breathing to process the lactic acid that was produced during exercise.

Heat Production

Because the catabolic processes of cells are never 100% efficient, some of the energy released is lost as heat. Because skeletal muscle tissues produce such a massive amount of heat—even when they are doing hardly any work—they have a great effect on body temperature. Recall from Chapter 6 that various heat loss mechanisms of the skin can be used to cool the body when it becomes overheated (see Figure 6-12, p. 209). Skeletal muscle tissues can likewise be used when the body’s temperature falls below the set point value determined by the “thermostat” in the hypothalamus of the brain. As Figure 11-15 shows, a low external temperature can reduce body temperature below the set point. Temperature sensors in the skin and other parts of the body feed this information back to the hypothalamus, which compares the actual value with the set point value (usually about 37° C). The hypothalamus responds to a decrease in body temperature by signaling skeletal muscles to contract. The shivering contractions that result produce enough waste heat to warm the body back to the set point temperature—and homeostatic balance is maintained.

The subject of energy metabolism is discussed more thoroughly in Chapter 27.
Skeletal muscle fibers can be classified into three types according to their structural and functional characteristics: (1) slow (red) fibers, (2) fast (white) fibers, and (3) intermediate fibers. Each type is best suited to a particular type or style of muscular contraction—a fact that is useful in considering how different muscles are used during different athletic activities. Although each muscle organ contains a mix of all three fiber types (part A of the figure), different organs have these fibers in different proportions, depending on the types of contraction that they most often perform (Figure B).

Slow fibers are also called red fibers because they contain a high concentration of myoglobin, the reddish pigment used by muscle cells to store oxygen. They are called slow fibers because their thick myofilaments are made of a type of myosin (type I) that reacts at a slow rate. Because they contract so slowly, slow fibers are usually able to produce ATP quickly enough to keep pace with the energy needs of the myosin and thus avoid fatigue. This effect is enhanced by the larger number of mitochondria than found in other fiber types and the rich oxygen store provided by the myoglobin. The slow, nonfatiguing char-
Characteristics of slow fibers make them especially well suited to the sustained contractions exhibited by postural muscles. Postural muscles containing a high proportion of slow fibers can hold the skeleton upright for long periods without fatigue.

**Fast fibers** are also called **white fibers** because they contain very little myoglobin. Fast fibers can contract much more rapidly than slow fibers because they have a faster type of myosin (type IIx) and because their system of T tubules and SR is more efficient at quickly delivering $\text{Ca}^{2+}$ to the sarcoplasm. The price of a rapid contraction mechanism is rapid depletion of ATP. Despite the fact that fast fibers typically contain a high concentration of glycogen, they have few mitochondria and thus must rely primarily on anaerobic respiration to regenerate ATP. Because anaerobic respiration produces relatively small amounts of ATP, fast fibers cannot produce enough ATP to sustain a contraction for very long. Because they can generate great force very quickly but not for a long duration, fast fibers are best suited for muscles that move the fingers and eyes in darting motions.

**Intermediate fibers** have characteristics somewhere in between the two extremes of fast and slow fibers. They are more fatigue resistant than fast fibers and can generate more force more quickly than slow fibers. This type of muscle fiber predominates in muscles that both provide postural support and are occasionally required to generate rapid, powerful contractions. One example is the *gastrocnemius*, or calf muscle, which helps support the leg but is also used in walking, running, and jumping (part B of the figure).

The bar graph in part C of the figure shows that the relative proportions of muscle fiber types, body wide, varies with the type of work a person does with his or her muscles. This graph underscores the fact that athletic training, for example, can produce changes in the mix of different fiber types in muscle tissue.

![Figure 11-15](image-url) **Figure 11-15 The role of skeletal muscle tissues in maintaining a constant body temperature.**

This diagram shows that a drop in body temperature caused by cold weather can be corrected by a negative feedback mechanism that triggers shivering (muscle contraction), which in turn produces enough heat to warm the body.
FUNCTION OF SKELETAL MUSCLE ORGANS

Although each skeletal muscle fiber is distinct from all other fibers, it operates as part of the large group of fibers that form a skeletal muscle organ. Skeletal muscle organs, often simply called muscles, are composed of bundle upon bundle of muscle fibers held together by fibrous connective tissues (see Figure 11-1, A). The details of muscle organ anatomy are discussed in Chapter 10. For now, we turn attention to the matter of how skeletal muscle organs function as a single unit.

Motor Unit

Recall that each muscle fiber receives its stimulus from a motor neuron. This neuron, often called a somatic motor neuron, is one of several nerve cells that enter a muscle organ together in a bundle called a motor nerve. One of these motor neurons, plus the muscle fibers to which it attaches, constitutes a functional unit called a motor unit (Figure 11-16). The single fiber of a somatic motor neuron divides into a variable number of branches on entering the skeletal muscle. The neuron branches of some motor neurons form a sheath of myelin, a protective covering that enhances conduction and enables the neuron to travel a greater distance.

QUICK CHECK

8. Where does the energy stored in ATP come from?
9. Contrast aerobic respiration and anaerobic respiration in muscle fibers.
10. What is the role of myoglobin in muscle fibers?

Figure 11-16 Motor unit. A motor unit consists of one somatic motor neuron and the muscle fibers supplied by its branches. A, Photomicrograph showing a nerve (black) branching to supply several dozen individual muscle fibers (red). B, Sketch showing a single motor unit. C, Diagram showing several motor units within the same muscle organ.
units terminate in only a few dozen muscle fibers, whereas others terminate in a few thousand fibers. Consequently, impulse conduction by one motor unit may stimulate only a small part of a muscle organ, whereas conduction by another motor unit may activate a much larger portion of a muscle organ. This fact bears a relationship to the function of the muscle as a whole. As a rule, the fewer the number of fibers supplied by a skeletal muscle’s individual motor units, the more precise the movements that muscle can produce. For example, in certain small muscles of the hand, each motor unit includes only a few muscle fibers, and these muscles produce precise finger movements. In contrast, motor units in large abdominal muscles that do not produce precise movements may have thousands of muscle fibers.

Myography

Many experimental methods have been used to study the contractions of skeletal muscle organs. They vary from relatively simple procedures, such as observing or palpating muscles in action, to the more complicated method of electromyography (recording electrical impulses from muscles as they contract). One method of studying muscle contraction particularly useful for the purposes of our discussion is called, simply, myography. Myography, a term that means “muscle graphing,” is a procedure in which the force or tension from the contraction of an isolated muscle is recorded as a line that rises and falls as the muscle contracts and relaxes (Figure 11-17). To get the muscle to contract, an electrical stimulus of sufficient intensity (the threshold stimulus) is applied to the muscle. A single, brief threshold stimulus produces a quick jerk of the muscle, called a twitch contraction.

The Twitch Contraction

The quick, jerky twitch contraction seen in a myogram serves as the fundamental model for how muscles operate. The myogram of a twitch contraction shown in Figure 11-18 shows that the muscle does not begin to contract at the instant of stimulation but rather a fraction of a second later. The muscle then increases its tension (or shortens) until a peak is reached, after which it gradually returns to its resting state. These three phases of the twitch contraction are called, respectively, the latent period, the contraction phase, and the relaxation phase. The entire twitch usually lasts less than one tenth of a second.

During the latent period, the impulse initiated by the stimulation travels through the sarcolemma and T tubules to the SR, where it triggers the release of calcium ions into the sarcoplasm. It is not until the calcium binds to troponin and sliding of the myofilaments begins that contraction is observed. After a few milliseconds, the forceful sliding of the myofilaments ceases and relaxation begins. By the end of the relaxation phase, all of the myosin-actin reactions in all the fibers have ceased.

Twitch contractions of muscle organs rarely happen in the body. Even if we tried to make our muscles twitch voluntarily, they won’t. Instead, our nervous system subconsciously “smooths out” the movements to prevent injury and to make our movements more useful to us. Sustaining a smooth contraction is something that we will discuss a little later. But, to begin our discussion, a look at the twitch contraction gives us important insight about the mechanisms of more typical types of muscle organ contractions.

Treppe: The Staircase Phenomenon

One interesting effect that can be seen in myographic studies of the twitch contraction is called treppe, or the staircase phenomenon. Treppe is a gradual, steplike increase in the strength of contraction that can be observed in a series of twitch contractions that occur about 1 second apart (Figure 11-19, B).

In other words, a muscle contracts more forcefully after it has contracted a few times than when it first contracts—a principle
Repeated stimulation of muscle in time lessens its excitability and contractility and may result in muscle fatigue, a condition in which the muscle does not respond to the strongest stimuli. Complete muscle fatigue can be readily induced in an isolated muscle but very seldom occurs in the body. (See Box 11-5.)

**Tetanus**

The concept of the simple twitch can help us understand the smooth, sustained types of contraction that are commonly observed in the body. Such smooth, sustained contractions are called tetanic contractions or, simply, tetanus. Figure 11-19, C, shows that if a series of stimuli come in a rapid enough succession, the muscle does not have time to relax completely before the next contraction phase begins. Muscle physiologists describe this effect as multiple wave summation—so named because it seems as though multiple twitch waves have been added together to sustain muscle tension for a longer time. The type of tetanus produced when very short periods of relaxation occur between peaks of tension is called incomplete tetanus. It is “incomplete” because the tension is not sustained at a completely constant level. Figure 11-19, D, shows that when the frequency of stimuli increases, the distance between peaks of tension decrease to a point at which they seem to fuse into a single, sustained peak. This produces a very smooth type of tetanic contraction called complete tetanus.

In a normal body, tetanus results from two factors working at the same time. One factor is the rapid-fire stimulation of nerve fibers that permits wave summation to occur in each fiber. Another factor is the coordinated contractions of different motor units within the muscle organ. These motor units fire in an asynchronous, over-

---

**BOX 11-5: SPORTS AND FITNESS**

**Muscle Fatigue**

Broadly defined, muscle fatigue is simply a state of exhaustion (a loss of strength or endurance) produced by strenuous muscular activity.

Physiological muscle fatigue is caused by any combination of local failure in the steps of muscle contraction (see Box 11-2 on p. 404). Depending on the muscle fiber type and the kind of activity, the cause may be a relative lack of ATP, which renders the myosin heads incapable of producing the force required for further muscle contractions. The low levels of ATP that produce fatigue may result from depletion of oxygen or glucose in muscle fibers or from an inability to regenerate ATP quickly enough. Thus, depletion of glycogen in the muscle often produces fatigue.

Accumulation of phosphate molecules (from the breakdown of ATP) may further interfere with contraction by binding to calcium ions that would otherwise be participating in the contraction process. Decreased pH from the buildup of lactic acid may also contribute to physiological fatigue by interfering with normal chemical reactions in the muscle fiber.

Under ordinary circumstances, however, complete physiological fatigue seldom occurs. It is usually psychological fatigue that produces the exhausted feeling that stops us from continuing a muscular activity. Thus, in physiological muscle fatigue, we cannot contract our muscles, but in psychological muscle fatigue, we simply will not contract our muscles because we feel tired.
lapping time sequence to produce a “relay team” effect that results in a sustained contraction. Tetanus is the kind of contraction exhibited by normal skeletal muscle organs most of the time.

**Quick Check**

11. What are the three phases of a twitch contraction? What molecular events occur during each of these phases?

12. What is the difference between a twitch contraction and a tetanic contraction?

13. How does the treppe effect relate to the warm-up exercises of athletes?

14. What is tetanus? Is it normal?

**Muscle Tone**

A tonic contraction (tonus, “tone”) is a continual, partial contraction in a muscle organ. At any one moment a small number of the total fibers in a muscle contract and produce tautness of the muscle rather than a recognizable contraction and movement. Different groups of fibers scattered throughout the muscle contract in relays. Tonic contraction, or muscle tone, is the low level of continuous contraction characteristic of the muscles of normal individuals when they are awake. It is particularly important for maintaining posture. A striking illustration of this fact is the following: when a person loses consciousness, muscles lose their tone, and the person collapses in a heap, unable to maintain a sitting or standing posture. Muscles with less tone than normal are described as flaccid, and those with more than normal tone are called spastic.

Muscle tone is maintained by negative feedback mechanisms centered in the nervous system, specifically in the spinal cord. Stretch sensors in the muscles and tendons detect the degree of stretch in a muscle organ and feed this information back to an integrator mechanism in the spinal cord. When the actual stretch (detected by the stretch receptors) differs from the set point stretch, signals sent via the somatic motor neurons adjust the strength of tonic contraction. This type of subconscious mechanism is often called a spinal reflex (discussed further in Chapters 12 to 15).

**The Graded Strength Principle**

Skeletal muscles contract with varying degrees of strength at different times—a fact called the graded strength principle. Because muscle organs can generate different grades of strength, we can match the force of a movement to the demands of a specific task (Box 11-6).

Various factors contribute to the phenomenon of graded strength. We have already discussed some of these factors. For example, we stated that the metabolic condition of individual fibers influences their capacity to generate force. Thus, if many fibers of a muscle organ are unable to maintain a high level of ATP and become fatigued, the entire muscle organ suffers some loss in its ability to generate maximum force of contraction. On the other hand, the improved metabolic conditions that produce the treppe effect allow a muscle organ to increase its contraction strength.

Another factor that influences the grade of strength exhibited by a muscle organ is the number of fibers contracting simultaneously. Obviously, the more muscle fibers contracting at the same time, the stronger the contraction of the entire muscle organ. How large this number is depends on how many motor units are activated or recruited. Recruitment of motor units, in turn, depends on the intensity and frequency of stimulation. In general, the more intense and the more frequent a stimulus, the more motor units that are recruited and the stronger the contraction. Figure 11-20 shows that increasing the strength of the stimulus beyond the threshold level of the most sensitive motor units causes an increase in the strength of contraction. As the threshold level of each additional motor unit is reached, the strength of contraction increases. This process continues as the strength of stimulation increases until the maximal level of contraction is reached. At this point, the limits of the muscle organ to recruit new motor units have been reached. Even if stimulation increases above the maximal level, the muscle cannot contract any more strongly. As long as the supply of ATP holds out, the muscle organ can sustain a tetanic contraction at the maximal level, with motor units contracting and relaxing in overlapping “relays” (see Figure 11-19, D).

The maximal strength that a muscle can develop is directly related to the initial length of its fibers—this is the length-tension relationship (Figure 11-21). A muscle that begins a contraction from a short initial length cannot develop much tension because its sarcomeres are already compressed. Conversely, a muscle that begins a contraction from an overstretched initial length cannot develop much tension because the thick myofilaments are too far away from the thin myofilaments to effectively pull them and thus compress the sarcomeres. The strongest maximal contraction is possible only when the muscle organ has been stretched to an optimal initial length. To illustrate this point, extend your elbow fully and try to contract the biceps brachii muscle on the ventral side of the upper part of your arm. Now flex the elbow just a little and contract the biceps again. Try it a third time with the elbow completely flexed. The greatest tension—seen as the largest “bulge” of the biceps—occurs when the elbow is partly flexed and the biceps only moderately stretched.
response when it detects the increased stretch caused by an increased load, feeds the information back to an integrator in the nervous system, and increases its stimulation of the muscle to counteract the stretch. This reflex maintains a relatively constant muscle length as load is increased up to a maximum sustainable level. When the load becomes too heavy and thus threatens to cause injury to the muscle or skeleton, the body abandons this reflex and forces you to relax and drop the load.

Another factor that influences the strength of a skeletal muscle contraction is the amount of load imposed on the muscle. Within certain limits, the heavier the load, the stronger the contraction. Lift your hand with palm up in front of you and then put this book in your palm. You can feel your arm muscles contract more strongly as the book is placed in your hand. This occurs because of a stretch reflex, a response in which the body tries to maintain constancy of muscle length (Figure 11-22). An increased load threatens to stretch the muscle beyond the set point length that you are trying to maintain. Your body exhibits a negative feedback

**BOX 11-6 Effects of Exercise on Skeletal Muscles**

Most of us believe that exercise is good for us, even if we have no idea what or how many specific benefits can come from it. Some of the good consequences of regular, properly practiced exercise are greatly improved muscle tone, better posture, more efficient heart and lung function, less fatigue, and looking and feeling better.

Skeletal muscles undergo changes that correspond to the amount of work that they normally do. During prolonged inactivity, muscles usually shrink in mass, a condition called disuse atrophy (part A of the figure). Disuse atrophy may result from general lack of use, but it is most often seen when a body part is immobilized by a cast or when the motor nerves are damaged. Exercise, on the other hand, may cause an increase in muscle size called hypertrophy.

Muscle hypertrophy can be enhanced by strength training, which involves contracting muscles against heavy resistance. Isometric exercises and weightlifting are common strength-training activities. This type of training results in increased numbers of myofilaments in each muscle fiber. Although the number of muscle fibers stays the same, the increased number of myofilaments greatly increases the mass of the muscle.

Endurance training, often called aerobic training (part B of the figure), does not usually result in as much muscle hypertrophy as strength training does. Instead, this type of exercise program increases a muscle’s ability to sustain moderate exercise over a long period. Aerobic activities such as running, bicycling, or other primarily isotonic movements increase the number of blood vessels in a muscle (see Figure 11-14). The increased blood flow allows more efficient delivery of oxygen and glucose to muscle fibers during exercise. Aerobic training also causes an increase in the number of mitochondria in muscle fibers. This allows production of more ATP as a rapid energy source.

**A, Disuse atrophy.** The arrow points to a group of muscle fibers that have atrophied from disuse (in this case from nerve damage). Notice how much smaller they are than the surrounding, normal fibers.

**B, Effects of aerobic training.** The graph shows that aerobic training increases the metabolic condition of muscles mainly by increasing levels of enzymes and the availability of oxygen. Only moderate increases in muscle fiber size occur.

Aerobic training also causes an increase in the number of blood vessels in a muscle.
Figure 11-21 The length-tension relationship. As this graph of muscle tension shows, the maximum strength that a muscle can develop is directly related to the initial length of its fibers. At a short initial length the sarcomeres are already compressed, and thus the muscle cannot develop much tension (position A). Conversely, the thick and thin myofilaments are too far apart in an overstretched muscle to generate much tension (position B). Maximum tension can be generated only when the muscle has been stretched to a moderate, optimal length (position C).

Figure 11-22 The stretch reflex. The strength of a muscle organ can be matched to the load imposed on it by a negative feedback response centered in the spinal cord. Increased stretch (caused by increased load) is detected by a sensory nerve fiber attached to a muscle cell (called a muscle spindle) specialized for this purpose. The information is integrated in the spinal cord and a correction signal is relayed through motor neurons back to the same muscle, which increases tension to return to the set point muscle length.
Isotonic and Isometric Contractions

The term isotonic literally means “same tension” (iso-, “equal,” -tonic, “tension”). An isotonic contraction is a contraction in which the tone or tension within a muscle remains the same as the length of the muscle changes (Figure 11-24, A). Because the muscle is moving against its resistance (load) in an isotonic contraction, the energy of contraction is used to pull on the thin myofilaments and thus change the length of a fiber’s sarcomeres. Put another way, in isotonic contractions the myosin cross bridges “win” the tug-of-war against a light load and are thus able to pull the thin myofilaments. Because the muscle is moving in an isotonic contraction, it is also called dynamic tension.

There are two basic varieties of isotonic contractions (Figure 11-24, A). Concentric contractions are those in which the movement results in shortening of the muscle, as when you pick up this...
book. Eccentric contractions are those in which the movement results in lengthening of the muscle being contracted. For example, when you slowly lower the book you have just picked up, you are contracting the same muscle you just used to lift it—but this time you are lengthening the muscle, not shortening it.

An **isometric contraction**, in contrast to an isotonic contraction, is a contraction in which muscle length remains the same while muscle tension increases (Figure 11-18, B). The term isometric literally means “same length.” You can observe isometric contraction by lifting up on a stationary handrail and feeling the tension increase in your arm muscles. Isometric contractions can do work by “tightening” to resist a force, but they do not produce movements. In isometric contractions, the tension produced by the “power stroke” of the myosin cross bridges cannot overcome the load placed on the muscle. Using the tug-of-war analogy, we can say that in isometric contractions the myosin cross bridges reach a “draw”—they hold their own against the load placed on the muscle but do not make any progress in sliding the thin myofilaments. Because muscles remain stable during isometric contraction, it is also called static tension.

**Quick Check**
15. What is meant by the term muscle tone?
16. Name four factors that influence the strength of a skeletal muscle contraction.
17. What is meant by the phrase “recruitment of motor units?”
18. What is the difference between isotonic and isometric contractions? Concentric and eccentric?

<table>
<thead>
<tr>
<th>Table 11-1 Characteristics of Muscle Tissues</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>SKELETAL</strong></td>
</tr>
<tr>
<td>Principal location</td>
</tr>
<tr>
<td>Principal functions</td>
</tr>
<tr>
<td>Type of control</td>
</tr>
<tr>
<td>Structural features</td>
</tr>
<tr>
<td>Striations</td>
</tr>
<tr>
<td>Nucleus</td>
</tr>
<tr>
<td>T tubules</td>
</tr>
<tr>
<td>Sarcoplasmic reticulum</td>
</tr>
<tr>
<td>Cell junctions</td>
</tr>
<tr>
<td>Contraction style</td>
</tr>
</tbody>
</table>

**Function of Cardiac and Smooth Muscle Tissue**
Cardiac and smooth muscle tissues operate by mechanisms similar to those in skeletal muscle tissues. Detailed study of cardiac and smooth muscle function will be set aside until we discuss specific smooth and cardiac muscle organs in later chapters. However, it may be helpful to preview some of the basic principles of cardiac and smooth muscle physiology so that we can compare them with those that operate in skeletal muscle tissue. Table 11-1 summarizes the characteristics of the three major types of muscle.

**Cardiac Muscle**
Cardiac muscle, also known as striated involuntary muscle, is found in only one organ of the body: the heart. Forming the bulk of the wall of each heart chamber, cardiac muscle contracts rhythmically and continuously to provide the pumping action necessary to maintain a relative constancy of blood flow through the internal environment. As you shall see, its physiological mechanisms are well adapted to this function.

The functional anatomy of cardiac muscle tissue resembles that of skeletal muscle to a degree, but it exhibits specialized features related to its role in continuously pumping blood. As Figure 11-25 shows, each cardiac muscle fiber contains parallel myofibrils. Each myofibril comprises sarcomeres that give the whole fiber a striated appearance. However, cardiac muscle fiber does not taper like skeletal muscle fiber but, instead, forms strong, electrically coupled junctions (intercalated disks) with other fibers. This feature, along with the branching exhibited by individual cells, allows cardiac fibers to form a continuous, electrically coupled mass called a syncytium (meaning “unit of combined cells”). Cardiac muscles thus form a continuous, contractile band around the heart.
of excitation and contraction on their own, although the rate of self-induced impulses can be altered by nervous or hormonal input. Figure 11-26 shows that impulses triggering cardiac muscle contractions are much more prolonged than those triggering skeletal muscle contractions. Because the sarcolemma of cardiac muscle sustains each impulse longer than in skeletal muscle,
Ca++ remains in the sarcoplasm longer. This means that even though many adjacent cardiac muscle cells contract simultaneously, they exhibit a prolonged contraction rather than a rapid twitch. It also means that impulses cannot come rapidly enough to produce tetanus. Because it cannot sustain long tetanic contractions, cardiac muscle does not normally run low on ATP and thus does not experience fatigue. Obviously, this characteristic of cardiac muscle is vital to keeping the heart continuously pumping.

Although cardiac muscle fiber has T tubules and SR, they are arranged a little differently than in skeletal muscle fibers. The T tubules are larger, and they form diads (double structures) rather than triads (triple structures), with a rather sparse SR. Much of the calcium that enters the sarcoplasm during contraction enters from outside the cells through the T tubules rather than from storage in the SR.

The structure and function of the heart are discussed further in Chapters 18 and 19.

**Smooth Muscle**

As we mentioned in Chapter 5, smooth muscle is composed of small, tapered cells with single nuclei. Smooth muscle cells do not have T tubules and have only loosely organized sarcoplasmic reticula. The calcium required for contraction comes from outside the cell and binds to a protein called calmodulin, rather than to troponin, to trigger a contraction event.

The lack of striations in smooth muscle fibers results from the fact that the thick and thin myofilaments are arranged quite differently than in skeletal or cardiac muscle fibers. As Figure 11-27 shows, thin arrangements of myofilaments crisscross the cell and attach at their ends to the cell’s plasma membrane. When cross bridges pull the thin filaments together, the muscle “balls up” and thus contracts the cell. Because the myofilaments are not organized into sarcomeres, they have more freedom of movement and as a result can contract a smooth muscle fiber to shorter lengths than in skeletal and cardiac muscle.

There are two types of smooth muscle tissue: single-unit and multiunit (Figure 11-28) smooth muscle.

In visceral, or single-unit, smooth muscle, gap junctions join individual smooth muscle fibers into large, continuous sheets—much like the syncytium of fibers observed in cardiac muscle. This type of smooth muscle is the most common, and it forms a muscular layer in the walls of many hollow structures such as the digestive, urinary, and reproductive tracts. Like cardiac muscle, this type of smooth muscle commonly exhibits a rhythmic self-excitation, or autorhythmicity (meaning “self-rhythm”), that spreads across the entire tissue. When these rhythmic, spreading waves of contraction become strong enough, they can push the contents of a hollow organ progressively along its lumen. This phenomenon, called peristalsis, moves food along the digestive tract, assists the flow of urine to the bladder, and pushes a baby out of the womb during labor. Such contractions can also be coordinated to produce mixing movements in the stomach and other organs.

Multiunit smooth muscle tissue does not act as a single unit (as in visceral muscle) but instead is composed of many indepen-
dent single-cell units. Each independent fiber does not usually generate its own impulse but rather responds only to nervous input. Although this type of smooth muscle can form thin sheets, as in the walls of large blood vessels, it is more often found in bundles (for example, the *arrector pili* muscles of the skin or muscles that control the lens of the eye) or as single fibers (such as those surrounding small blood vessels).

The structure and function of smooth muscle organs are discussed in later chapters.

**Figure 11-28 Types of smooth muscle.** A, Single-unit (visceral) smooth muscle. Neurotransmitters released from varicosities (bulges) in the nerve fiber trigger impulses in the smooth muscle membranes—an event that is transmitted to adjacent muscle fibers through gap junctions. Thus, a large mass of muscle fibers acts as a single unit. B, Multiunit smooth muscle. Each muscle fiber is triggered independently by nerve stimulation.

**QUICK CHECK**

19. How do slow, separate, autorhythmic contractions of cardiac muscle make it well suited to its role in pumping blood?
20. What produces the striations in cardiac muscle?
21. How are myofilaments arranged in a smooth muscle fiber?
22. What is the difference between *single-unit* and *multiunit* smooth muscle?

**THE BIG PICTURE**

**Muscle Tissue and the Whole Body**

The function of all three major types of muscle (skeletal, smooth, and cardiac) is integral to the function of the entire body. What does the function of muscle tissue contribute to homeostasis of the whole body? First, all three types of muscle tissue provide the movement necessary for survival. Skeletal muscle moves the skeleton so that we can seek shelter, gather food, and defend ourselves. All three muscle types produce movements that power vital homeostatic mechanisms such as breathing, blood flow, digestion, and urine flow.

The relative constancy of the body's internal temperature could not be maintained in a cool external environment if not for the "waste" heat generated by muscle tissue—especially the large mass of skeletal muscle found throughout the body. Maintenance of a relatively stable body position—posture—is also a primary function of the skeletal muscular system. Posture, specific body movements, and other contributions of the skeletal muscular system to homeostasis of the whole body were discussed in Chapter 10. The homeostatic roles of smooth muscle organs and the cardiac muscle organ (the heart) are examined in later chapters.

Like all tissues of the body, muscle tissue gives and takes. A number of systems support the function of muscle tissues. Without these systems, muscle would cease to operate. For example, the nervous system directly controls the contraction of skeletal muscle and multiunit smooth muscle. It also influences the rate of rhythmic contractions in cardiac muscle and visceral smooth muscle. The endocrine system produces hormones that assist the nervous system in regulation of muscle contraction throughout the body. The blood delivers nutrients and carries away waste products. Nutrients for the muscle are ultimately procured by the respiratory system (oxygen) and digestive system (glucose and other foods). The respiratory system also helps get rid of the waste of muscle metabolism, as does the urinary system. The liver processes lactic acid produced by muscles and converts it back to glucose. The immune system helps defend muscle tissue against infection and cancer—as it does for all body tissues. The fibers that make up muscle tissues, then, are truly members of the large, interactive "society of cells" that forms the human body.
MAJOR MUSCULAR DISORDERS

As you might expect, muscle disorders, or myopathies, generally disrupt the normal movement of the body. In mild cases, these disorders vary from inconvenient to slightly troublesome. Severe muscle disorders, however, can impair the muscles used in breathing—a life-threatening situation.

Muscle Injury

Injuries to skeletal muscles caused by overexertion or trauma usually result in a muscle strain. Figure 11-29 shows an unusually severe muscle strain that resulted in a massive tear in the entire muscle organ. Muscle strains are characterized by muscle pain, or myalgia (my-AL-jee-ah), and involve overstretching or tearing of muscle fibers. If an injury occurs in the area of a joint and a ligament is damaged, the injury may be called a sprain. Any muscle inflammation, including that caused by a muscle strain, is termed myositis (my-oh-SYE-tis). If tendon inflammation occurs with myositis, as in a charley horse, the condition is termed fibromyositis (fyebro-my-oh-SYE-tis). Although inflammation may subside in a few hours or days, it usually takes weeks for damaged muscle fibers to repair. Some damaged muscle cells may be replaced by fibrous tissue, thereby forming scars. Occasionally, hard calcium is deposited in the scar tissue.

Cramps are painful muscle spasms (involuntary twitches). Cramps often result when a muscle organ is fatigued or mildly inflamed, but they can be a symptom of any irritation or ion and water imbalance.

Convulsions are abnormal, uncoordinated tetanic contractions of varying groups of muscles. Convulsions may result from a disturbance in the brain or seizure in which the output along motor nerves increases and becomes disorganized.

Fibrillation is an abnormal type of contraction in which individual fibers contract asynchronously rather than at the same time. This produces a flutter of the muscle but no effective movement. Fibrillation can also occur in cardiac muscle, where it reduces the heart’s ability to pump blood.

Muscle Infections

Several bacteria, viruses, and parasites may infect muscle tissue—often producing local or widespread myositis. For example, in trichinosis, widespread myositis is common. The muscle pain plus stiffness that sometimes accompanies influenza is another example.

One bacterial infection you have probably heard of is called tetanus—a confusing name because that word also refers to normal, sustained muscle contractions (see Figure 11-19). However, tetanus the infection is an abnormal condition caused by infection of the central nervous system with the bac-
terium Clostridium tetani. This bacterium releases a toxin called tetanospasmin that triggers overactivity of the nervous system, often involving painful spasms of the muscles throughout the body. Because the spasms frequently begin in the head and cause the jaw muscles to tense involuntarily, the infection is often called “lockjaw.”

Once a tragically common disease, poliomyelitis is a viral infection of the nerves that control skeletal muscle movement. Although the disease can be asymptomatic, it often causes paralysis that may progress to death. Virtually eliminated in the United States as a result of a comprehensive vaccination program, it still affects millions in other parts of the world.

Muscular Dystrophy

Muscular dystrophy (DISS-troh-fee) is not a single disorder but a group of genetic diseases characterized by atrophy (wasting) of skeletal muscle tissues. Some, but not all forms of muscular dystrophy can be fatal.

The common form of muscular dystrophy is Duchenne (doo-SHEN) muscular dystrophy (DMD). This form of the disease is also called pseudohypertrophy (meaning “false muscle growth”) because the atrophy of muscle is masked by excessive replacement of muscle by fat and fibrous tissue. DMD is characterized by mild leg muscle weakness that progresses rapidly to include the shoulder muscles. The first signs of DMD are apparent at about 3 years of age, and the stricken child is usually severely affected within 5 to 10 years. Death from respiratory or cardiac muscle weakness often occurs by the time the individual is 21 years old.

DMD is caused by a mutation in the X chromosome, although other factors may be involved. DMD occurs primarily in boys. Because girls have two X chromosomes and boys only one, genetic diseases involving X chromosome abnormalities are more likely to occur in boys. This is true because girls with one damaged X chromosome may not exhibit an “X-linked” disease if their other X chromosome is normal (see Chapter 34). The gene involved in DMD normally codes for the protein dystrophin (DIS-trof-in), which forms strands in each skeletal muscle fiber and helps hold the cytoskeleton to the sarcolemma (see Figure 4-34 on p. 139). Dystrophin thus helps keep the muscle fiber from breaking during contractions. Normal dystrophin is missing in DMD because a deletion or mutation of part of the dystrophin gene causes the resulting protein to be nonfunctional (it has the wrong shape to do the job). Therefore, in DMD muscle fibers break apart more easily—causing the symptoms of progressive muscle weakness.

Myasthenia Gravis

Myasthenia gravis (my-es-THEE-nee-ah GRAH-vis) is a chronic disease characterized by muscle weakness, especially in the face and throat. Most forms of this disease begin with mild weakness and chronic muscle fatigue in the face, then progress to wider muscle involvement. When severe muscle weakness causes immobility in all four limbs, a myasthenic crisis is said to have occurred. A person in myasthenic crisis is in danger of dying of respiratory failure because of weakness in the respiratory muscles.

Myasthenia gravis is an autoimmune disease in which the immune system attacks muscle cells at the neuromuscular junction. Nerve impulses from motor neurons are then unable to fully stimulate the affected muscle.

Hernias

Weakness of abdominal muscles can lead to a hernia, or protrusion, of an abdominal organ (commonly the small intestine or stomach) through an opening in the abdominal wall. There are several types of hernias. The most common one, inguinal hernia (Figure 11-30), occurs when the hernia extends down
the inguinal canal, often into the scrotum or labia. Males experience this most often, and it can occur at any age.

An **umbilical hernia** occurs at the navel or umbilicus where the umbilical cord connects to the abdominal wall before birth. In this condition, a loop of intestine bulges through the umbilical opening, as you can see in Figure 11-31. It can happen at any age, but most frequently in newborns.

Another type of hernia occurs in the **femoral ring** where the vessels and nerves exit the abdominopelvic cavity to travel along the femur. A **femoral hernia** occurs when a loop of intestine moves through the femoral ring and into the groin area (Figure 11-32). Women may experience a femoral hernia because of anatomical changes during pregnancy.

When the stomach protrudes through an opening in the diaphragm called the *esophageal hiatus*, the condition is called **hiatal hernia** (Figure 11-33). The word hiatus literally means “opening.” Hiatal hernias are very common and often weaken the *lower esophageal sphincter*, which closes the entry to the stomach—thus allowing reflux (backflow) of stomach acids that produce heartburn.

Hernia is referred to as “reducible” when the protruding organ is manipulated back into the abdominal cavity, either naturally by lying down or by manual reduction through a surgical opening in the abdomen. A “strangulated” hernia occurs when the mass is not reducible and blood flow to the affected organ (i.e., intestine) is stopped. Obstruction and gangrene can occur. Pain and vomiting are usually experienced, and emergency surgical intervention is required.
## LANGUAGE OF SCIENCE (Cont’d from page 395)

- **muscle tone** [tone stretching]
- **myofibrils** (my-oh-FYE-bris) [myo- muscle, -fibril small fiber]
- **myofilaments** (my-oh-FIL-ah-ments) [myo- muscle, - filament thread]
- **myoglobin** (my-oh-GLOH-bin) [myo- muscle, -globin containing protein]
- **myosin** (MY-oh-sin) [myos- muscle, -in substance]
- **neuromuscular junction (NMJ)** (noo-roh-MUSS-kyoo-lar) [neuro- nerve, -muscular muscle, -ar pertaining to]
- **posture** (POS-chur) [postura position]
- **recruited** [re- again, -cruit grow]
- **sarcoplasmic reticulum (SR)** (sar-koh-PLAZ-mik reh-TIK-yoo-lum) [sarco- flesh, -plasm to mold, -ic pertaining to, reticulum small net]
- **treppe** (TREP-ee) [treppe staircase]
- **triad** (TRY-ad) [triad group of three]
- **twitch contraction**
- **Z lines** (also called **Z disks**)

## LANGUAGE OF MEDICINE

- **aerobic training** (air-OH-bik) [aero- air, -ic pertaining to]
- **contusion** (kon-TOO-zhun) [contuse- to bruise, -ion result]
- **convulsions** (kon-VUL-shuns) [convuls- cramp, -ion result]
- **cramps**
- **disuse atrophy** (DIS-yoos AF-roh-fee) [a- without, -atrophy nourishment]
- **Duchenne muscular dystrophy (DMD)** (doo-SHEN MUSS-kyoo-lar DISS-troh-fee) [Duchenne Guillaume B.A. Duchenne de Boulogne French neurologist, dys- bad, -atrophy nourishment]
- **dystrophin** (DIS-trof-in) [dys- bad, -atrophy nourishment]
- **endurance training**
- **femoral hernia** (FEM-or-all HER-nee-ah) [femor- femur, -al pertaining to, hernia rupture]
- **fibrillation** (fi-bri-LAY-shun) [fibril- small fiber, -ation process]
- **fibromyositis** (fye-broh-my-oh-SYE-tis) [fibo- fiber, -myo- muscle, -itis inflammation]
- **hiatal hernia** (hye-AY-tal HER-nee-ah) [hiatus gap, -al pertaining to, hernia rupture]
- **inguinal hernia** (ING-gwi-nal HER-nee-ah) [inguin- groin, -al pertaining to, hernia rupture]
- **muscular dystrophy** (MUSS-kyoo-lar DISS-troh-fee) [dys- bad, -atrophy nourishment]
- **myalgia** (my-AL-jee-ah) [my- muscle, -algia pain]
- **myasthenia gravis** (my-es-THEE-nee-ah GRAH-vis) [my- muscle, -asthenia weakness, gravis severe]
- **myopathies** (my-OP-ah-thees) [myo- muscle, -pathy disease]
- **myositis** (my-oh-SYE-tis) [myos- muscle, -itis inflammation]
- **poliomyelitis** (pol-ee-oh-my-eh-LYE-tis) [polio- gray matter in the nervous system, -mye- marrow, -itis inflammation]
- **rigor mortis** (RIG-or MOR-tis) [rigor stiffness, mortis death]
- **sprain**
- **strain**
- **strength training**
- **umbilical hernia** (um-BIL-i-kul HER-nee-ah) [umbili- navel, -al pertaining to, hernia rupture]
CASE STUDY

Cecelia Pulaski, age 27, noticed changes in her energy level accompanied by muscle weakness. Particularly when she swallowed, she would sometimes feel that food was stuck in her throat. She noticed that her voice was very weak. The weakness would usually improve when she rested. She was admitted to the hospital for myalgia, paresthesia, and immobility of all extremities. At the time of admission, she was having difficulty breathing. She recently experienced an extremely stressful divorce.

On physical examination, Ms. Pulaski is unable to close her eyes completely. Her pupils respond normally to light and show normal accommodation. She has lost 15 pounds in the last month. Her tongue has several fissures. Her laboratory data are essentially normal except for a positive antibody test, which is indicative of an autoimmune disorder attacking muscle cells at the neuromuscular junction. Electrical testing of the neuromuscular junction shows some blocking of discharges. A pharmacological test using edrophonium chloride is positive. Edrophonium chloride inhibits the breakdown of acetylcholine at the postsynaptic membrane.

1. Based on what is known about myasthenia gravis, which of the following explanations for Cecelia's symptoms would be physiologically correct?
   A. Adenosine triphosphate pulls the thin myofilaments during muscle contraction.
   B. Active sites on the actin molecules are exposed.
   C. A flood of calcium ions combines with troponin molecules in the thin filament myofibrils.
   D. Nerve impulses from motor neuromuscular junctions are unable to fully stimulate the affected muscle.

2. Based on the action of edrophonium chloride, as stated above, how will this drug work in Ms. Pulaski's case? Edrophonium chloride:
   A. Increases the availability of acetylcholine at postsynaptic receptor sites
   B. Decreases the availability of acetylcholine at postsynaptic receptor sites
   C. Increases the attachment of thick myosin filaments to the sarcomere
   D. Decreases electrical impulses in the sarcolemma

3. Based on the action of edrophonium chloride, as stated above, which one of the following physical effects will most likely be noted by Ms. Pulaski?
   A. Relaxation of muscle
   B. Decreased muscle excitation and contraction
   C. Increased muscle excitation and contraction
   D. Increased flaccidity of muscle

4. Based on the information presented in the case study, which one of the following disorders does Ms. Pulaski have?
   A. Muscular dystrophy
   B. Poliomyelitis
   C. Fibromyositis
   D. Myasthenia gravis

CHAPTER SUMMARY

INTRODUCTION
A. Muscular system is responsible for moving the framework of the body
B. In addition to movement, muscle tissue performs various other functions

GENERAL FUNCTIONS
A. Movement of the body as a whole or its parts
B. Heat production
C. Posture

FUNCTION OF SKELETAL MUSCLE TISSUE
A. Characteristics of skeletal muscle cells
   1. Excitability (irritability)—ability to be stimulated
   2. Contractility—ability to contract, or shorten, and produce body movement
   3. Extensibility—ability to extend, or stretch, thereby allowing muscles to return to their resting length
B. Overview of the muscle cell (Figures 11-1 and 11-2)
   1. Muscle cells are called fibers because of their threadlike shape
   2. Sarcolemma—plasma membrane of muscle fibers

3. Sarcoplasmic reticulum
   a. Network of tubules and sacs found within muscle fibers
   b. Membrane of the sarcoplasmic reticulum continually pumps calcium ions from the sarcoplasm and stores the ions within its sacs for later release (Figure 11-3)

4. Muscle fibers contain many mitochondria and several nuclei

5. Myofibrils—numerous fine fibers packed close together in sarcoplasm

6. Sarcomere
   a. Segment of myofibril between two successive Z lines
   b. Each myofibril consists of many sarcomeres
   c. Contractile unit of muscle fibers

7. Striated muscle (Figure 11-4)
   a. Dark stripes called A bands; light H zone runs across the midsection of each dark A band
   b. Light stripes called I bands; dark Z line extends across the center of each light I band

8. T tubules
   a. Transverse tubules extend across the sarcoplasm at right angles to the long axis of the muscle fiber
   b. Formed by inward extensions of the sarcolemma
c. Membrane has ion pumps that continually transport Ca\(^{++}\) ions inward from the sarcoplasm
d. Allow electrical impulses traveling along the sarcolemma to move deeper into the cell

9. Triad
a. Triplet of tubules; a T tubule sandwiched between two sacs of sarcoplasmic reticulum. Allows an electrical impulse traveling along a T tubule to stimulate the membranes of adjacent sacs of the sarcoplasmic reticulum

C. Myofilaments (Figures 11-5 and 11-6)
1. Each myofibril contains thousands of thick and thin myofilaments
2. Four different kinds of protein molecules make up myofilaments
   a. Myosin
      (1) Makes up almost all the thick filament
      (2) Myosin “heads” are chemically attracted to actin molecules
      (3) Myosin “heads” are known as **cross bridges** when attached to actin
   b. Actin—globular protein that forms two fibrous strands twisted around each other to form the bulk of the thin filament
   c. Tropomyosin—protein that blocks the active sites on actin molecules
   d. Troponin—protein that holds tropomyosin molecules in place
3. Thin filaments attach to both Z lines (Z disks) of a sarcomere and extend part way toward the center
4. Thick myosin filaments do not attach to the Z lines

D. Mechanism of contraction
1. Excitation and contraction (Figures 11-7 through 11-12; Table 11-1)
   a. A skeletal muscle fiber remains at rest until stimulated by a motor neuron
   b. Neuromuscular junction—motor neurons connect to the sarcolemma at the motor endplate (Figure 11-7)
   c. Neuromuscular junction is a synapse where neurotransmitter molecules transmit signals
   d. Acetylcholine—the neurotransmitter released into the synaptic cleft that diffuses across the gap, stimulates the receptors, and initiates an impulse in the sarcolemma
   e. Nerve impulse travels over the sarcolemma and inward along the T tubules, which triggers the release of calcium ions
   f. Calcium binds to troponin, which causes tropomyosin to shift and expose active sites on actin
   g. Sliding filament model (Figures 11-11 and 11-12)
      (1) When active sites on actin are exposed, myosin heads bind to them
      (2) Myosin heads bend and pull the thin filaments past them
      (3) Each head releases, binds to the next active site, and pulls again
      (4) The entire myofibril shortens
2. Relaxation
   a. Immediately after the Ca\(^{++}\) ions are released, the sarcoplasmic reticulum begins actively pumping them back into the sacs (Figure 11-3)
   b. Ca\(^{++}\) ions are removed from the troponin molecules, thereby shutting down the contraction
3. Energy sources for muscle contraction (Figure 11-13)
   a. Hydrolysis of ATP yields the energy required for muscular contraction
   b. ATP binds to the myosin head and then transfers its energy to the myosin head to perform the work of pulling the thin filament during contraction
   c. Muscle fibers continually resynthesize ATP from the breakdown of creatine phosphate (CP)
   d. Catabolism by muscle fibers requires glucose and oxygen
   e. At rest, excess O\(_2\) in the sarcoplasm is bound to myoglobin (Box 11-4)
      (1) Red fibers—muscle fibers with high levels of myoglobin
      (2) White fibers—muscle fibers with little myoglobin
   f. Aerobic respiration occurs when adequate O\(_2\) is available
   g. Anaerobic respiration occurs when low levels of O\(_2\) are available and results in the formation of lactic acid
   h. Glucose and oxygen supplied to muscle fibers by blood capillaries (Figure 11-14)
   i. Skeletal muscle contraction produces waste heat that can be used to help maintain the set point body temperature (Figure 11-15)

**FUNCTION OF SKELETAL MUSCLE ORGANS**
A. Muscles are composed of bundles of muscle fibers held together by fibrous connective tissue
B. Motor unit (Figure 11-16)
   1. Motor unit—motor neuron plus the muscle fibers to which it attaches
   2. Some motor units consist of only a few muscle fibers, whereas others consist of numerous fibers
   3. Generally, the smaller the number of fibers in a motor unit, the more precise the movements available; the larger the number of fibers in a motor unit, the more powerful the contraction available
C. Myography—method of graphing the changing tension of a muscle as it contracts (Figure 11-17)
D. Twitch contraction (Figure 11-18)
   1. A quick jerk of a muscle that is produced as a result of a single, brief threshold stimulus (generally occurs only in experimental situations)
   2. The twitch contraction has three phases
      a. Latent phase—nerve impulse travels to the sarcoplasmic reticulum to trigger release of Ca\(^{++}\)
      b. Contraction phase—Ca\(^{++}\) binds to troponin and sliding of filaments occurs
      c. Relaxation phase—sliding of filaments ceases
Chapter 11  Physiology of the Muscular System

E. Treppe—the staircase phenomenon (Figure 11-19, B)
1. Gradual, steplike increase in the strength of contraction that is seen in a series of twitch contractions that occur 1 second apart
2. Eventually, the muscle responds with less forceful contractions, and the relaxation phase becomes shorter
3. If the relaxation phase disappears completely, a contracture occurs

F. Tetanus—smooth, sustained contractions
1. Multiple wave summation—multiple twitch waves are added together to sustain muscle tension for a longer time
2. Incomplete tetanus—very short periods of relaxation occur between peaks of tension (Figure 11-19, C)
3. Complete tetanus—the stimulation is such that twitch waves fuse into a single, sustained peak (Figure 11-19, D)

G. Muscle tone
1. Tonic contraction—continual, partial contraction of a muscle
2. At any one time, a small number of muscle fibers within a muscle contract and produce a tightness or muscle tone
3. Muscles with less tone than normal are flaccid
4. Muscles with more tone than normal are spastic
5. Muscle tone is maintained by negative feedback mechanisms

H. Graded strength principle
1. Graded strength principle—skeletal muscles contract with varying degrees of strength at different times
2. Factors that contribute to the phenomenon of graded strength (Figure 11-23)
   a. Metabolic condition of individual fibers
   b. Number of muscle fibers contracting simultaneously; the greater the number of fibers contracting, the stronger the contraction
   c. Number of motor units recruited
   d. Intensity and frequency of stimulation (Figure 11-20)
   e. Length-tension relationship (Figure 11-21)
      (1) Maximal strength that a muscle can develop bears a direct relationship to the initial length of its fibers
      (2) A shortened muscle’s sarcomeres are compressed; therefore, the muscle cannot develop much tension
      (3) An overstretched muscle cannot develop much tension because the thick myofilaments are too far from the thin myofilaments
      (4) Strongest maximal contraction is possible only when the skeletal muscle has been stretched to its optimal length
   f. Stretch reflex (Figure 11-22)
      (1) The load imposed on a muscle influences the strength of a skeletal contraction
      (2) Stretch reflex—the body tries to maintain constancy of muscle length in response to increased load
      (3) Maintains a relatively constant length as load is increased up to a maximum sustainable level

I. Isotonic and isometric contractions (Figure 11-24)
1. Isotonic contraction
   a. Contraction in which the tone or tension within a muscle remains the same as the length of the muscle changes
      (1) Concentric—muscle shortens as it contracts
      (2) Eccentric—muscle lengthens while contracting
   b. Isometric—literally means “same tension”
   c. All of the energy of contraction is used to pull on thin myofilaments and thereby change the length of a fiber’s sarcomeres
2. Isometric contraction
   a. Contraction in which muscle length remains the same while muscle tension increases
   b. Isometric—literally means “same length”
3. Most body movements occur as a result of both types of contractions

FUNCTION OF CARDIAC AND SMOOTH MUSCLE TISSUE

A. Cardiac muscle (Figure 11-25)
1. Found only in the heart; forms the bulk of the wall of each chamber
2. Also known as striated involuntary muscle
3. Contracts rhythmically and continuously to provide the pumping action needed to maintain constant blood flow
4. Cardiac muscle resembles skeletal muscle but has specialized features related to its role in continuously pumping blood
   a. Each cardiac muscle contains parallel myofibrils (Figure 11-25)
   b. Cardiac muscle fibers form strong, electrically coupled junctions (intercalated disks) with other fibers; individual cells also exhibit branching
   c. Syncytium—continuous, electrically coupled mass
   d. Cardiac muscle fibers form a continuous, contractile band around the heart chambers that conducts a single impulse across a virtually continuous sarcolemma
   e. T tubules are larger and form diads with a rather sparse sarcoplasmic reticulum
   f. Cardiac muscle sustains each impulse longer than in skeletal muscle; therefore, impulses cannot come rapidly enough to produce tetanus (Figure 11-26)
   g. Cardiac muscle does not run low on ATP and does not experience fatigue
   h. Cardiac muscle is self-stimulating

B. Smooth muscle
1. Smooth muscle is composed of small, tapered cells with single nuclei (Figure 11-27)
2. No T tubules are present, and only a loosely organized sarcoplasmic reticulum is present
3. Ca++ comes from outside the cell and binds to calmodulin instead of troponin to trigger a contraction
4. No striations because thick and thin myofilaments are arranged differently than in skeletal or cardiac muscle fibers; myofilaments are not organized into sarcomeres
5. Two types of smooth muscle tissue (Figure 11-28)
a. Single unit (visceral)
   (1) Gap junctions join smooth muscle fibers into large, continuous sheets
   (2) Most common type; forms a muscular layer in the walls of hollow structures such as the digestive, urinary, and reproductive tracts
   (3) Exhibits autorhythmicity and produces peristalsis
b. Multiunit
   (1) Does not act as a single unit but is composed of many independent cell units
   (2) Each fiber responds only to nervous input

THE BIG PICTURE: MUSCLE TISSUE AND THE WHOLE BODY
A. Function of all three major types of muscle is integral to function of the entire body
B. All three types of muscle tissue provide the movement necessary for survival
C. Relative constancy of the body’s internal temperature is maintained by “waste” heat generated by muscle tissue
D. Maintains the body in a relatively stable position

REVIEW QUESTIONS
1. Define the terms sarcolemma, sarcoplasm, and sarcoplasmic reticulum.
2. Describe the function of the sarcoplasmic reticulum.
3. How are acetylcholine, Ca++, and adenosine triphosphate (ATP) involved in the excitation and contraction of skeletal muscle?
4. Describe the general structure of ATP and tell how it relates to its function.
5. How does ATP provide energy for muscle contraction?
6. Describe the anatomical arrangement of a motor unit.
7. List and describe the different types of skeletal muscle contractions.
8. Define the term recruited.
10. What are the effects of exercise on skeletal muscles?

CRITICAL THINKING QUESTIONS
1. Explain how skeletal muscles provide movement, heat, and posture. Are all of these functions unique to muscles? Explain your answer.
2. The characteristic of excitability is shared by what other system? Relate contractility and extensibility to the concept of agonist and antagonist discussed in Chapter 10.
3. What structures are unique to skeletal muscle fibers? Which of the structures are involved primarily in contractility and which are involved in excitability?
4. Explain how the structure of myofilaments is related to their function.
5. Explain how the sliding filament theory allows for the shortening of a muscle fiber.
6. Compare and contrast the role of Ca++ in excitation, contraction, and relaxation of skeletal muscle.
7. People who exercise seriously are sometimes told to work a muscle until they “feel the burn.” In terms of how the muscle is able to release energy, explain what is going on in the muscle early in the exercise and when the muscle is “burning.”
8. Using fiber types, design a muscle for a marathon runner and a different muscle for a 100-yard–dash sprinter. Explain your choice.
9. Explain the meaning of a “unit of combined cells” as it relates to cardiac muscle. How does this structural arrangement affect its function?
10. Which of the two smooth muscle types would be most affected by damage to the nerves that stimulate them?
Career Choices Massage Therapist

Massage therapy improves circulation and helps correct imbalances in the soft tissue areas of the body, as in muscles and fascia. As a massage therapist, I am self-employed. My clientele consists of hospital-referred patients for lymph drainage therapy (see Chapter 20) and people who seek traditional massage for various reasons. The majority of my work consists of home visits; however, I also do some work at health facilities and with organized groups.

I have been massaging people since I was 5 years old. I massaged my other classmates whenever they had problems or hurt themselves. It has always been natural and enjoyable to work on others with my hands. Now, as an adult, I have professional certification in many different areas of therapeutic massage and related healing arts.

Some of the current trends in the massage profession are La Stone Therapy, treatment of cancer patients (with a doctor’s approval), and stress and pain relief.

My job is extremely rewarding. I rarely encounter a client in a bad mood before a massage, and never after completion! It is very rewarding to see a client or patient’s problem improve, or simply see a look of contentment on their face. There is a personal, respectful bond between the therapist and the client. In addition, this profession can be financially rewarding.

Knowledge of anatomy and physiology is definitely needed to effectively treat muscular/skeletal problems because isolation of the involved muscle is necessary. I still review anatomy and physiology of the muscular, skeletal, and lymphatic areas all the time. My advice is to study anatomy and physiology in a quiet room, do not study an entire chapter in one sitting, spread the chapter out, and take notes!